Randomized PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension

نویسندگان

  • Manfred K. Warmuth
  • Dima Kuzmin
چکیده

We design an on-line algorithm for Principal Component Analysis. The instances are projected into a probabilistically chosen low dimensional subspace. The total expected quadratic approximation error equals the total quadratic approximation error of the best subspace chosen in hindsight plus some additional term that grows linearly in dimension of the subspace but logarithmically in the dimension of the instances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online PCA Randomized Online PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension

We design an online algorithm for Principal Component Analysis. In each trial the current instance is centered and projected into a probabilistically chosen low dimensional subspace. The regret of our online algorithm, i.e. the total expected quadratic compression loss of the online algorithm minus the total quadratic compression loss of the batch algorithm, is bounded by a term whose dependenc...

متن کامل

Randomized Online PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension∗

We design an online algorithm for Principal Component Analysis. In each trial the current instance is centered and projected into a probabilistically chosen low dimensional subspace. The regret of our online algorithm, that is, the total expected quadratic compression loss of the online algorithm minus the total quadratic compression loss of the batch algorithm, is bounded by a term whose depen...

متن کامل

Regret bounds for Non Convex Quadratic Losses Online Learning over Reproducing Kernel Hilbert Spaces

We present several online algorithms with dimension-free regret bounds for general nonconvex quadratic losses by viewing them as functions in Reproducing Hilbert Kernel Spaces. In our work we adapt the Online Gradient Descent, Follow the Regularized Leader and the Conditional Gradient method meta algorithms for RKHS spaces and provide regret bounds in this setting. By analyzing them as algorith...

متن کامل

Tuning Bandit Algorithms in Stochastic Environments

Algorithms based on upper-confidence bounds for balancing exploration and exploitation are gaining popularity since they are easy to implement, efficient and effective. In this paper we consider a variant of the basic algorithm for the stochastic, multi-armed bandit problem that takes into account the empirical variance of the different arms. In earlier experimental works, such algorithms were ...

متن کامل

Beyond Logarithmic Bounds in Online Learning

We prove logarithmic regret bounds that depend on the loss LT of the competitor rather than on the number T of time steps. In the general online convex optimization setting, our bounds hold for any smooth and exp-concave loss (such as the square loss or the logistic loss). This bridges the gap between theO(lnT ) regret exhibited by expconcave losses and the O( √ LT ) regret exhibited by smooth ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006